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operators and solving the problem of a mass-varying 
harmonic oscillator 
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Physics Department, University of Hong Kong, Bonham Road, Hong Kong 
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Abstract. We present a method for finding the evolution operator for the Schrodinger 
equation for the Hamiltonian expressible as 

A( t ) = a,  ( t ) j+ + a, ( i I j o  + a3 ( t ) j -  

where ;+,j0 and j -  are the SU(2) group generators. Such a method is applied to the 
disentangling technique for exponential operators which are not necessarily unitary. As a 
demonstration of our general approach, we solved the problem of a harmonic oscillator 
with a varying mass. 

1. Introduction 

The evolution operator method has long been used to solve problems in quantum 
mechanics. This method was first proposed by Dyson [ l ]  and recently developed 
further by Lam and Fung [2]. But finding the explicit form of an evolution operator 
for the evolution equation 

is not an easy task. However, if the Hamiltonian takes the following form: 
m fi( t )  = c a, ( t ) f i l  

I = I  

where a, ( t )  are functions of time, and {fit, i = 1, . . . , m} forms a closed Lie algebra 2 
(of dimension m), then the evolution operator can be expressed locally in any one of 
the following forms [3,4]: 

i.(r)=exP( !, b i ( r ) k t )  (1.3) 

where bi ( t ) ,  ci( t )  are functions of time. With the above relations, the evolution equation 
(1.1) can be considered as solved if the explicit expressions for b , ( t )  or c , ( t )  are found. 
The above procedure provides a way of finding the evolution operator for the Hamil- 
tonian (1.2). 

0305-4470/88/224115 + 17$02.50 @ 1988 IOP Publishing Ltd 4115 



4116 C M Cheng and P C W Fung 

In this paper we shall concentrate on a particular time-dependent Hamiltonian 
which comprises SU(2) group generators 

where j+, j, and .?- form the SU(2) Lie algebra: 
A(t) = a , ( t ) j + + a , ( t ) j , + a , ( t ) j _  (1 .5)  

A A  A 

[J,, J-3 = 2 J ,  (1 .6a)  

[J,, j * ]  = *j* (1.66) 
and a,  ( t )  are arbitrary functions of time. We shall employ the particular choice of 
evolution operator (1.4) and the evolution equation ( 1 . 1 )  in § 2 to obtain a set of 
ordinary differential equations for c , ( t ) .  Once a l ( t )  are given explicitly, the set of 
ordinary differential equations can be solved and we can obtain the expression for the 
evolution operator. In this way the problem of solving the evolution equation, which 
is an operator equation, is reduced to solving a set of ordinary differential equations. 
This is the key result we obtain. The reason for choosing the particular form (1.4) for 
the evolution operator will be discussed in § 2. 

As a first application, we shall consider an exponential operator in § 3 whose 
exponent is a linear combination of SU(2) group generators, namely .?=,j,,. By 
employing the result in 9 2 ,  we shall devise a method to disentangle this exponential 
operator into a product of exponential operators. This procedure provides a way to 
uncouple exponential operators which are not necessarily unitary. As a particular 
example, we shall derive the well known Baker-Campbell-Hausdorff formula [ 51. 

In $4, we shall apply the result in $ 2  to the problem of a time-dependent harmonic 
oscillator with a varying mass. We find the evolution operator explicitly. The wavefunc- 
tion for the evolution of an initially coherent state is then obtained. Hence the coherence 
and squeezing properties of this wavefunction can be studied. Besides the expectation 
values for the energy, the position and the momentum are found. It is the first time, 
as the authors realise, that these expectation values are found explicitly by the direct 
use of the evolution operator method., These results show an intimate relationship 
between the mass-varying harmonic oscillator we consider here and the classical 
damped harmonic oscillator. More detailed discussion is given in this section. 

Section 5 concludes this investigation. 

2. Evolution operator 

Firstly we start with the Hamiltonian (1 .5)  
A(t)  = a , ( t ) j + + a , ( t ) j , + a , ( t ) j - .  

A(t)l@(t)) = ifi- p ( t ) ) .  (2.1) 

l@(t)) = Go, O)I@(O)) (2.2) 

The Schrodinger equation corresponding to this Hamiltonian is 
a 

a t  

As usual, the evolution operator is introduced as follows: 

where I@(O)) is the wavefunction at time t = 0. Inserting (2.2) into (2.1) produces the 
evolution equation 
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Since j , ,  j ,  form a closed Lie algebra su(2), the evolution operator can be expressed 
in the following form: 

i r ( t ,  0) =exp(c , ( t ) i+)  exp(c2(t)jo) exp(c3(t)i-)  (2.4) 

where c i ( t )  are to be determined. We have chosen this particular form for G(t, 0) 
because it is expressed as a product of exponential operators, and direct differentiation 
with respect to time for this operator can be readily carried out. Now we have 

+exp(-c,)C,.f-} O(t, 0). (2.5) 

Putting the above result together with (2.2) into (2.1), and comparing the two sides, 
we obtain three ordinary differential equations: 

i h [ c1 - c ,  c2 - c: exp( - c2) i3 ] = a ( 2 . 6 ~ )  

ih[C2+2c1 exp(-c,)d,] = a2 (2.6b) 

ih  exp(-c2)C3 = a3 ( 2 . 6 ~ )  

which can be rewritten as 

C, = a ;  + a;cl - a;c: ( 2 . 7 ~ )  

C2=a;-2a;cl (2.7b) 

C3 = a i  exp( c 2 )  ( 2 . 7 ~ )  

with the initial conditions 

c , ( O ) = O  ( 2 . 8 ~ )  

c2(0) = 0 (2.8b) 

c3(0) = 0. ( 2 . 8 ~ )  

The a; are given by 

a; = aj/ih. (2.9) 

Note that we have written cl( t ) ,  etc, as c1 for simplicity with the understanding that 
they are explicitly time dependent. Equation system (2.7) is our main result, which 
gives the relationship between ci and ai. It should be noted that equation (2.7a), which 
is just the Riccati equation, is the key equation we have to solve first. Once it is solved, 
the other two equations can be solved readily to give 

c2 = 1,' du ( a - 2a ; c1 ) (2.10) 

c3 = 1,' du a; exp(c,). (2.11) 
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3. The disentangling technique 

Very often, one encounters the problem of disentangling exponential operators into 
products of exponential operators. One formula that is often employed to serve such 
a purpose is the Baker-Campbell-Hausdorff formula for the su(2) Lie algebra [5]: 

exp(aj+ - a*?-) = exp(pl.?+) exp(p2jo) exp(p ,L)  (3.1) 
where 

cy = -t 6 exp( -ip) (3.2) 

p ,  = -exp(-ip) t a n + 6  (3.3) 
p2 = -2 ln(cos f 6) (3.4) 

p3 = -PT. (3.5) 
Recently two papers have been published on the disentangling technique [6,7]. In 
particular, Truax [6] worked out explicitly the Baker-Campbell-Hausdorff formula 
for the groups SU(2) and SU(1, l),  and the operators involved are unitary. 

In the following we shall give an alternative method for uncoupling exponential 
operators of the following type: 

4, = exp(a,.f++ a2 jo+  u 3 L )  

& ( A )  =exp[A(a,.?++a2.?,+a3~-)]. (3.7) 

(3.6) 

where a,, a2 and a3 are coefficients. T)is operator is not necessarily unitary. To start 
with, we introduce a parameter A in SI as follows: 

Differentiating with respect to A gives the following differential equations: 

a 
ah  - 4, ( A  = g&, ( A  4 , ( 0 ) = 1  

where 
A A A 

@=u,J++a,J,+a,J-. (3.9) 
Equation (3.8) is similar in form to the evolution equation (1.1). Thus the former 
result in 0 2 can be employed. To uncouple the exponential operator (3.7), we suppose 
that i, ( A )  can be expressed in the following form: 

i , ( A )  = g2(A) (3.10) 

where 

j 2 ( A )  =exp(cl(A)j+)  exp(c2(A)-6) exp(+(A)j-) (3.11) 

and c i ( A )  are to be determined. Since i 2 ( A )  is also a solution to (3.8), we can simply 
put (3.11) back into (3.8) and obtain the differential equations for ci(A): 

a 
- c, = U , +  a2c1- a3c: 
ah 

(3.12) 

d 
- c  - a  -2a3c, 
ah 2 -  

(3.13) 

a 
- ah c3 = a3 exp( c2) (3.14) 
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with the initial conditions 

c1 (0) = 0 

4 0 )  = 0 

c3(0) = 0. 

( 3 . 1 5 ~ )  

(3.156) 

(3 .15~)  

Thus if (3.12)-(3.14) are solved, the disentangling process of the exponential operator 
in (3.10) is established. To proceed further, we make the following restriction that 
both a2 and at  a3 are real quantities; such a restriction? will simplify the mathematics, 
and it is satisfied in our subsequent derivation of the Baker-Campbell-Hausdorff 
formula later in this section. 

By making the following transformation 

(3.16) 

the non-linear equation (3.12) is transformed to a second-order linear differential 
equation 

a 2 u  au 
a h 2  

a,- -a ,a,  u = o .  -- (3.17) 

Since a,, a ,a3  are, as we considered above, real, the above equation is a real linear 
equation which can be solved readily. As usual we consider the following characteristic 
equation for (3.17): 

(3.18) 6,  - a26 - ala3 = 0. 

We denote the solutions as 6, and a-: 
a,*(a:+4a,a,)1'Z 

(3.19) 
2 

6, = 

We consider two situations. 

(i)  If 

a:+4a1 a3 = 0 (3.20) 

then 

6, = 6- = ; a * .  (3.21) 

The solution to (3.17) is thus 

U =constant x (1 -ia2A) exp($a,A). (3.22) 

Substituting this result into (3.16), (3.13) and (3.14) and employing the initial condition 
(3.15), we obtain the following result: 

(3.23 a )  

c2(A) = -2 In(1 -&,A)  (3.236) 

2a3 1 
c , (A)  =- 

U Z  (l- ia,A)'  
(3.23 c) 

t It is clear that our method works even if the restriction is relaxed. 
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(ii) If 

a:+4a, a3 z 0 

then 

6, # 6-  

(3.24) 

(3.25) 

and so we have 

U = C,  exp(S+A)+ C2 exp(6-A) 

where C,  and C, are constants. This will lead to the results 

(3.26) 

6+6- exp(6+h)-exp(6-A) 
c , ( A )  =- 

a3 &exp(6+A) - 6, exp(6-A) 
(3 .274  

exp(6,h') -exp(a-A') 
c ~ ( A ) = u , A  -26+6- d h '  (3.27b) joA 6-  exp(S+A')-S+exp(6-A') 

c3(A) = a3 exp(c,(A')) dh' .  JoA (3 .27~)  

So the exponential operator in (3.7) is uncoupled into the product form 

exp[A ( a, j+  + a2 jo+ a 3 j - ) ]  = exp( c, ( A ) j + )  exp( c2(A) jO)  exp( c3(A)j-)  (3.28) 

with c i ( A )  given by (3.23) or (3.27). By putting A = 1 in (3.28), we arrive at the following 
result: 

exp( a , j+  -i- a2j0 + a3 j -  ) = exp( c1 ( 1 I+ exp( c2 ( I j , )  exp( c3 ( 1 j -  ). (3.29) 

To check the validity of (3.29), we shall derive the Baker-Campbell-Hausdorff formula 
(3.1) based on (3.29). Now we begin with 

3, = exp[aj+-  a*?-] (3.30) 

where a is expressible as 

a = -;a exp( -icp) 

Comparing (3.30) with (3.6), we have 
in which 6, cp are real quantities. 

a ,  = a 

a2 = 0 

(3.31) 

(3.32) 

(3.33) 

c l 3  = -a*. (3.34) 

Now a, and a, a3 (= - Ial') are real and so the previous result (3.29) can be employed. 
One can then see that (3.24) is valid, i.e. 

a ,+4a,  a3 = -4Ial2 # 0. (3.35) 

By substituting (3.32)-(3.34) into (3.27) and after some manipulation, we readily obtain 

3, = e x p [ a j + - a * j - ] = e x p ( c , ( l ) j + )  exp(c,(l)j0) exp(c3(l) j - )  (3.36) 

with ci(A) given by 

c,(A) = -exp(-ip) tani4A 
c2(A) = -2 ln(cosi6A) 

(3.37a) 

(3.376) 

c3(A) = exp(ip) tanf4A. (3.37 c )  
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Putting A = 1 in (3.37) will give (3.3)-(3.5) and (3.36) is then just the well known 
Baker-Campbell-Hausdorff formula for the SU(2) Lie group. 

It should be remarked that, when a2 and a l a 3  are complex quantities, equations 
(3.12)-(3.14) can also be solved. Our restriction for real a, and a l a 3  are only for the 
sake of simplicity. 

Finally we would like to stress that the method for uncoupling exponential operators 
developed above is not restricted to the symmetry group SU(2). It can in principle be 
generalised to higher symmetry groups. Of course, in that case a larger set of differential 
equations have to be solved in order to obtain useful results. 

4. Harmonic oscillator with varying mass 

4.1. Evolution operator 

We shall in this section employ the result in § 2 to study a harmonic oscillator with a 
varying mass. The general expression for the Hamiltonian of this oscillator is 

where M (  t )  is the mass of the oscillator and is time dependent. Historically the above 
Hamiltonian has been employed to discuss dissipative systems and to describe damped 
oscillators of constant mass [8-131. However this description leads to an unphysical 
result that seems to violate the uncertainty relation [8,9]. This obscurity arises because 
the above Hamiltonian cannot describe a quantum damped oscillator of constant mass 
[14-161. In fact the Hamiltonian represents an oscillator of variable mass, whose 
classical behaviour is identical to that of a damped oscillator of constant mass [14]. 

The Hamiltonian (4.1) has been investigated by a number of authors [17-251. In 
the following we shall tackle this quantum problem by the evolution operator method 
developed in 0 2. To start with, we rewrite the Hamiltonian (4.1) in the following form: 

A(t) = a , ( t ) ~ + + a , ( t ) ~ , + a , ( t ) ~ _  (4.2) 

where 

and 

1 A2 j - - q  
+-2A 

a , ( t )  = AM(t)02 

a2( t )  = 0 

(4.3a) 

(4.36) 

(4.3c) 

(4.4a) 

(4.46) 

(4.4c) 
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In view of equations (2.7a), (2.10) and (2.11), we can represent the evolution'operator 
for the above Hamiltonian as follows: 

g(t, 0) = exp(c l ( r ) j+)  exp(c2(t)jo) exp(c,(t) j-)  (4.5) 

with ci ( t )  given by 

a 
d t  

c1 ( t )  = iM( t )  - [ln U( t ) ]  (4.6a) 

in which U( t )  satisfies the following differential equation: 

ii + yo( t ) t i  + w 2 u  = 0 

and 

(4.66) 

( 4 . 6 ~ )  

(4.7) 

It is interesting to see that the expression for ci ( t )  is related to the solution of the 
differential equation (4.7) which is just the equation of motion for a classical damped 
oscillator of constant mass. 

4.2. Coherence and squeezing property o j  the wavefunction 

Having found the evolution operator in (4.5), we can look at the evolution of a coherent 
state and discuss its squeezing and coherence property. 

Suppose we start with a coherent state at t = 0: 

I@(O)) = I f f ) .  

I@(t)>= f i c t ,  0)Iff). 

The wavefunction at any later time will be represented by 

Performing the usual quantisation procedure at t = 0 

1 ( m w i  + i t )  
1 

f f =  
(2mfiw) 

in which 

m = M(0) 

we can define a new operator A as 

A = 6(t, O ) C ; i i ' ( t ,  0). 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

It is easy to see that the wavefunction I @ ( t ) )  is a coherent state with respect to this 
new operator 

AiI ( t )= aI@(t)) .  (4.14) 



Evolution operator for a general type Hamiltonian 4123 

Using (4.5) and (4.11), it can be shown that the original operator 6 is related to the 
new operator a by a Bogoliubov transformation 

a = T I &  - T 2 6 +  (4.15) 

with 

1771 /2 - /77212=  1 (4.16) 

where vl  and v2 are given by 

[ 1 - cIc3 -exp(c,)+ c,/mw - mwc3].  exP(-4c2) 
2 772 = 

(4.17a) 

(4.17 b )  

The result (4.14), together with (4.15), implies that the wavefunction I@( r ) )  is a squeezed 
state. So the wavefunction starts as a coherent state at time r = 0 and evolves as a 
squeezed state at a later time. 

To discuss the squeezing property of this wavefunction, it is convenient to define 
the following two operators: 

(4.18a) 2 1 -1 - 2 ( 6  + 6 + )  

x^ - - - (6 -&+) .  1 (4.18b) 
21 2 -  

Using the evolution operator in (4.5), it can be shown that the expectation values of 
these two operators with respect to the wavefunction (4.10) is given by 

(2,) = (@(t)lx^ll@(t)) 

- [ c, c3 +exp(c,) - c , /mw]a*} .  

The corresponding fluctuations in 2, and 2, will then be 

Ax2 , - - 1 exp( - c 2 ) (  1 - m 2  o2 c:) 

Ax2 - - 1 exp( - c 2 ) { [  c, c3 + exp( c2)12 - c:/ m'w'}. 

Immediately we see that 

Ax, CC exp( -4c2) 

Ax2 a exp($c,). 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

So we obtain squeezing in the fluctuation of one operator in the expanse of an increase 
in the fluctuation of the other operator. Thus the squeezing property of I @ ( t ) )  is 
apparent here. 
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4.3. Model Hamiltonian 

We shall in this section consider a specific model of mass variation for the oscillator. 
We assume that the mass of the oscillator is exponentially increasing (or decreasing) 
in time: 

M ( t ) = m e x p ( y t ) .  (4.25) 
The resulting Hamiltonian corresponds to the Kacai Hamiltonian [8]. This specific 
model has been studied by a number of authors [ 17,18,20,22,25] using the transforma- 
tion method or the Green function approach. Here we wish to demonstrate that our 
evolution operator method can yield the exact closed-form solution to the problem. 

First we note that we have to find the solution to the differential equation (4.7). 
From (4.25), Y o ( t )  in (4.8) becomes 

YO( t )  = Y (4.26) 
so that the differential equation (4.7) now corresponds to the equation of motion for 
a constant-mass oscillator under constant damping 

i i+yti+w’u=o. (4.27) 
This equation can be solved readily and we obtain the following results for the 
coefficients c, ( t )  appearing in the evolution operator (4.5). 

(i)  When y2<4w2 (underdamping) 

exP(Yt) 
f y + $ t  cot ;tt c , ( t )  = -imw2 ( 4 . 2 8 ~ )  

c2( t )  = yt - 2 In[ ( y/ 5) sin $[t + cos t[t] (4.28b) 
1 1 

c 3 ( t )  = -- 
rn ;y +;e cot f t t  

where 
t= (4w2- y y .  

t exP(Yt) c1 ( t )  = - imw2 
1 +fy t  

c2( t )  = yt -2  ln(1 +fy t )  
i t  c3( t )  = -- - 

m l+$yt ‘  

(ii) When y2 = 4w2 (critical damping) 

(iii) When y2 > 4w2 (overdamping) 

c l ( t )  = -imw2 exp( Y t )  
j y - k f i  coth $ i t  

(4 .28~)  

(4.29) 

( 4 . 3 0 ~ )  

(4.30b) 

(4 .30~)  

(4.3 1 a )  

c2( t )=  yt-2 ln[(y/ l )  s inhi l t+cosh$l t ]  (4.31b) 
i 1 

m f y + f l  coth S i t  
c3( t )  = -- (4 .31~)  

(4.32) 
Now the evolution operator is completely determined by the above expressions. Hence 
we can readily evaluate expectation values of the energy, position and momentum. 
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l ~ , , , , , , ~ ~ ~ ~ , , " " " ~ l ~ ~ ~ ~ ~ ~ ~ ' l l ' ~ ' ~ ~ ' ~ ~ ~ l ' ' ~ ' ' ' ~ ~ ' l ' ~ ~ ~ ~ ~ ' ~ ' ~ ' ~ ~ ' ~ ~ ~ ~ ~ ' i ~ ~ '  

First of all we look at the expectation value of the energy. We assume that the 
initial wavefunction is a coherent state (4.9) 

I W O ) )  = la) 

a = ( n o )  1'2 exp(ip). 

in which we represent a as 

(4.33) 

Making use of the results in (4.28)-(4.32), the expectation value of the energy can be 
found explicitly as follows. 

(i) When y 2  < 4w2 

sin 5t cos 2 p  + no 4 sin2 itt sin 2p  
5 

(ii) When y 2  = 4w2 

E = hw[(no+i ) (  1 +2w2t2) + noyt  cos 2 p  + n,ywt2 sin 2pl .  (4.35) 

(iii) When y 2  > 4w2 

sinh lt cos 2 p  + no 

(4.36) 

We readily observe that, for y2<4w2, the energy oscillates periodically, while for 
y 2  4w2, the energy will not oscillate any more. In figure 1, we plot the energy against 
time to illustrate the above feature. 

1000 , I / 
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Here, if we denote the energy as 

E = E ( ? ,  cp) (4.37) 

then it will have the following properties: 

E ( y ,  cp) = E(Y, cp+ ..I (4.38) 

E ( - %  cp) = E(?, cp +t..). (4.39) 

Equation (4.38) illustrates the symmetry property of the energy with respect to the 
phase angle cp while (4.39) relates the energy for a positive y oscillator with that of a 
negative y oscillator. 

Now we come to look at the expectation values of the position and momentum for 
the mass-varying oscillator. We see from (4.18) that 

(4.40) 

p^= (2hmw)”’iZ. (4.41) 

So with the help of the results (4.19)-(4.22), the expectation values for p  ̂ and 4, together 
with their fluctuations, can be evaluated and are given below. 

(i) When y z  < 4wz 

4 = (@(t)ls^l@(t)) 

2 
exp(-;yt) - sin(:&)[(;[ cot t& + i y )  cos cp + U  sin (91 (4.42) 

5 

(4.43) 

p = (2n0hmw)”2 exp(fyt)(2/5) sin t5 t [ (+e  cot tst  -4-y) sin cp - w cos cp] 

A p z = i h m w  exp(yt)[(2/5) s int@]2[w2+($y-i5 cot $.$)’I. 
(4.44) 

(4.45) 

So the uncertainty relation is 

Ap A q  = t h  [ (2/ 5) sin &I2[ ( w ’ + ay2 - ft’ cot’ $$)’+ w 2 e 2  cot’ $ft] I”. (4.46) 

(ii) When y z  = 4w2 

(4.47) 

(4.48) 

p =  (2nohmu)’” exp(tyt)[( l - tyt)  sin cp -ut cos cp] (4.49) 

A p 2 = $ h m w  exp(yt)( l  -y t+2w2f2)  (4.50) 

ApAq = ; h ( 1 + 4 ~ ~ t ~ ) ” ~ .  (4.51) 

(iii) When y2 > 4w’ 

(4.52) 
2 
f 

exp( -fyt) - sinh fLt[(+f coth ist + i y )  cos cp + w sin cp] 
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- 

lo-” 

h 
A q 2 = =  exp(-yt)[(2/5) sinh $5tI2[w2+(iy+f5 coth 15t)’] (4.53) 

p = (2nohmw)’”  exp(4yt) 

Ap2 =4hmw exp(yt)[(2/5) sinh ~5t]’[w2+($y--~5 coth &lt)‘] 
x ( 2 / 5 )  sinh fct[($l coth $st - $y) sin p - w cos p ]  (4.54) 

(4.55) 

A p A q = t h [ ( 2 / 5 )  sinh$Jt]*[(w2+$y2-t5’ coth’ i { t ) ’ + w 2 5 ’  coth’ ;5t]”’. (4.56) 

\ 

, , , , , , , , , I ,  , , , I ,  , , , I , ,  , , I , ,  , , I , ,  , , [ , , , [ , , , I [ , 1 , , , I I I I I I I ,  I I I ,  I ,  I I ,  1 1 1  I I I I I ,  I I I 

In the above results, we immediately see that all the fluctuations Ap’, Aq’ and A p b q  
are independent of no and p. In fact, Ap and A q  give the magnitude of the vacuum 
fluctuations in p̂  and i. In figures 2 and 3, we plot the time variation of the fluctuations 
A q 2  and Ap’, respectively. These diagrams clearly show that there is squeezing in the 
fluctuation of $, together with an increase in the fluctuation in 6. However the 
uncertainty relation 

A p A q  2 4% (4.57) 

is satisfied at all times. This is depicted in figure 4. 
Now let us turn to look at the expectation value of the position of the oscillator. 

Since we start with a coherent state, this coherent state will generate the classical 
behaviour for the mass-varying oscillator. In figure 5 we give the plot of the time 
variation of the position of the oscillator. It clearly shows that the motion of this 
mass-varying oscillator resembles that of a classical damped harmonic oscillator. In 
this case, y in (4.25) appears to take the role of a damping coefficient. 

1 

t ( l l w )  

Figure 2. Time variation of the variance in q ,Aq* .  (The same symbols are used as in 
figure 1.) 
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Finally if we represent p and 4 by 

P = A x  (PI 

4 = dr,  9) 

4 ( %  (PI = - 4 ( %  (P+ ..I 
P( Y, (P 1 = -P ( 7, cp + r) 

then the following properties for jj and 4 are observed: 

1 a--% cp)=--J(?: ( P + b )  

P(-% c p )  = mw4(y ,  ( P + M  

(4.58) 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

5. Conclusion 

We have developed explicitly a method to find the evolution operator for a Hamiltonian 
expressible in the form (1.5). Our procedure is to assume the form for the evolution 
operator (as in (2.4)) and then construct a set of ordinary differential equations (i.e. 
(2.7)) for the coefficients. The critical step is basically in the choice of the form (2.4) 
for the evolution operator. This method can, in principle, be. applied to other Hamil- 
tonian systems consisting of group generators of symmetries other than the SU(2) 
symmetry assumed here. 
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Figure 4. Time variation of the product uncertainty Apdq. (The same symbols are used 
as in figure 1.)  

As an application of our methodology, we have demonstrated a way of uncoupling 
an exponential operator. Our method does not require that the exponential operator 
be unitary. Thus this disentangling technique can be applied to a larger range of 
exponential operators than those applicable by the Baker-Campbell-Hausdorff formula 
in (3.1). This BCH formula is deduced from our result as a special example. 

To apply the result in § 2 further, we consider the problem of a time-dependent 
harmonic oscillator with a varying mass. The evolution operator is explicitly found?. 
Now, using our derived evolution operator, we can show that a coherent state will 
evolve as a squeezed state. When considering a specific type of mass variation, the 
expectation value for the energy, position and momentum are found. Fluctuations in 
the position and momentum are also evaluated. This method enables us to perform 
explicit numerical computation. Our analysis shows that there is a close relationship 
between our time-dependent oscillator and a damped harmonic oscillator. Besides it 
is shown that a harmonic oscillator with negative y value can be related simply to 
those with positive y ones (cf (4.39), (4.62) and (4.63)). We have presented a numerical 
analysis for positive y only. It is seen explicitly that there is squeezing in the fluctuation 
in the position. However, for oscillators with negative y, there will be squeezing in 
the momentum instead. 

Finally we come back to the evolution operator. At the beginning, we employed 
the form (1.4) of the evolution operator. However, this representation is local in time, 
namely valid in a range of time intervals. Such a restriction can be seen to arise from 

t In a recent paper by Fernandez [ 2 6 ] ,  the evolution operator is found by another method. However, the 
explicit form is not given. 
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Figure 5. Variation of the expectation value of position 4 at different times for no = 0.5 
and p = 0. (The same symbols are used as in figure 1.) 

the form of the coefficient c Z ( t )  appearing in (4.28b), (4.30b) and (4.31b) in our specific 
problem. As we know, the expression inside the natural logarithmic function in c2 
should be positive. However, as we noted, in all the expressions we have derived, c2 
only appears in the following form: exp( * cz). In this way the restriction due to the 
natural logarithmic function is in some sense relaxed by the exponential function. So, 
on the whole, we encounter no restriction on time and it appears that the results 
obtained so far are valid for all time. 

Finally we note that the method developed so far can, in principle, be extended 
to other types of Hamiltonian. 
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